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0. ODUCTION

Study how well a passive scalar teaur (c.g. dye in water)
incompressible flows.can be mixedby

Importantproblem:

Analytically, rotated to irregular transport, anomalous and
enhanced dissipation)=) turbulenal

2 In applications, e.g. pollutant contamination, co2 dispersal,
efficientcombustion, extension in manifacturing
Two main mechanisms for mixing (Danckwezts, Eckart, Welander '50s)
· filamentation due to transport by volume - paseering flows
Istizzing)=> growth of decivatives of tracer.

· diffusion.

We will peimazily concentrate on effectof stizzing and

neglect diffusion, sources andsinks.
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MIXING IN THEOCEAN AND ATMOSPHERE

Global CO2 concentration active mixing and churning
of ocean waters

in 2013 (record year)

Scourtesy of NASAVisible Earth)



BEDWORKS

Large literature on mixing:
· turbulence (Boffetta ctAl., Gotoh-Watanabel

· ergodic theory (Azef, Liverani, Ottino,Dolgopyat....

· homogenization, singular perturbation (Otto, ...)
· optimal control (coulfied, Hu-wal

In incompressible fluid mechanics, connection with:
· Relaxation (dissipation) enhancing flows (constantin etAl.,..)
· Inviscial damping andstability of Euler flows (Beekossian -

Masmoudi, Bedcossian - Coti Zelat, ...)

Our approach is based on toolsfrom PDEs andgeometry
I classical geometry andgeometric analysis).
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↑IRREGULAR TRANSPORT
- O

Passive scalar assumed to solve a linear transport equation i

It O +u.0 =
0

I
0 C01 =Do, (T)

whee 0: 1x [0,5] -> iu:2x[0,53.-Me, r= Rc
or =4d, d 2, u given, diru =0.

Assume a has limited (sobocer) regularity. Even when us is

regular, dependence of 0 on the flow of e is nonlinear.

Because a is divergence face, III is (formally) equivalentto
acontinuity equation:t0 + dis(a0 =0,00 =00. (C)

For most lecture =4? Refer to a as the advecting velocity.

Lipschitz-continuous velocity

when ee4"(T0,5], Lip'(4), the classical Cauchy-
Lipschitz theory applice -> sopi (T) by the Method o-
characterstics.
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(a) Any weak solution o of (i) with 00e(P(2), 1=p<c,
is a lagrangian solution: ocx,t) =00 (E - (x,t))

with the flow of u:

E+(x,t)
=u(t,e(x,t),

d E,x,0) =X.

E-referred to as the back-to-labels map.

(b)thefirereiter's ake Lipschitz in space, and the

11,(,+)19(y) elt

where is the Lipschitz constant of e.

(2) Weak solutions of ITI are unique andO is Lipschitz
continuous if do is.
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Soboler velocities

We now assume * (0)[0,T]; w'P (T), p<0.

Notation:We denote the 4-based Sobole spaces, as usual

wk,p(+2) =(ft(P(π)/vkfe(P)+43,1p-x.
the Lipschitz space Lip =WI,

If 00P(4), weak solutions still exist (provided ue(i,y +t=1)
but they may not be unique,

Note that if pl2, ut WP => ue 19,qcd, by sober embedding.

Uniqueness can be stored for renormalized solutions (DiPerna - Lions
I

80s) => informally, O is a renormalized solution if (O)is a weak

solution of (T) for all functions -25(1), b(0) =0.

Remark:If r419(2), then non uniqueness for Lagrangian
solutions withsoboler velocities was nantly obtained by
convex integration (SicGelyhidi-Modenal, Cheskyder. We '201.



⑥

Ropetiesofmelizedsolutions:

weak solutions obtained by mollification andby vanishing
viscosity (add 310 andsend s->0) are renormalized if 00 ELP,

p=1) DiPerna - Lions '80s, LeBus-Lions '04, Cappa-Spirito'15)

2 If O is normalized, the LP norm of 0 is conserved by the flow:

I01t,"(p =1100 (11,p + +2.70,5]

if i is divergence free.

3 The theory of renormalized solutions, in particular uniqueness, can
be extended to velocity fields me L7(20,TS; BE/T4) with 00

-

bounded, where BV is the space of functions with Bounded
vaciation I weak closure of irill -> tu is a measure (Ambeosio '90s).

The result in 3 is sharp (a counterexample discussedlater).
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#. MIXING NORMS AND RATES

Informally, Scalar O is perfectly mixed if O =0, when Iis

the
average of 0:olt) =fie0x,Hex.

Assumption:throughout acume Pot 19(2), 8 =
0.

Because we work with weak solutions, oct) =0 ft if E. =0.

Definition: Oct is perfectly mixed if Oltrixweakly in
(2(17. Tmix as is called the mixing time.

Note that a cannotconverge to two strongly, as the norm of 0
is conserved.

Ergodic mixing (stzong):The flow of u is mixing if, for any
two Boal measurable Sets A, Bwith positive measure

,m(b=(A)1B)-> m(A)m(B) (EM)
n -c

Im Lebesque measure, by push-forward).
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condition (EM) says thatDo and Oct), when Om=XA, decorrelate
as n ->c. Using that simple functions are dens if $ is
mixing in theeegodic sense, then any Ore LP(TY is perfectly
mixed atthe mixing time.

Two fundamental questions azise:

given the regularity of us, whatis the optimal mixing rate?

2 given the regularity of u, is the mixing time mix finite er
infinite?

To answer O andI, inteoduce quantitative measures of mixing.

Negative Sebotew noms:for convenience, use L2-bace noems
-2

defined using Fourier series. Let f be a distributions on 11
-

andlet (f.,2k3=:fk1 k =x2,ep(x) =cik.xbe the 6-th Fourier
coefficient off. For Set, define the s-noem:

11f1) =1fks: =(Ez2,k70 18125(12)"
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Mix-norms

using uscaling, one can see thatthe s-noem amplifies large scales

and penalizes smallscales if sc0.

Mixing arises from the cication of small (space) scales by the flow
=y negative sobolew noems of Olt will decay in time.

Lemma (Doesing -Thiffeauct'll): (On3 <L2(42), En =0.

On5 "On,81sxo.

we can use any negative soboler noem to quantify mixing.
Refer to negative sober noems as mix-noems.

In 2D, normalizing IlOoll,2= 1, the -1 noem has the dimension

of a lengthscale.

Definition: Ef(0)(t): =N101111is the functional mixing

scale for scalar & attime to



10

other mix-norms used in literature (S=-!, Mathews - Mezic - Petzolol).
2

Related geometric concept, the characteristic length scale of teacer at t

E-mixing and rearrangement cost

Definition:Ameasurable set 1 with m(A) = Im (TY, is K-mixed
to scales, when 0<kcY, 530,if fee any x-42:

m(D(x,y))-m(D(x,y) 1 1) -(1 - k)m(D(x,d))(A)

when D(x, 5) is the disk centend atX with radius 9.

Apply this nation to the levelsets of 0. Assume for simplicity
Or is a binary function 00 = (

1 On Ar
I m(As) =Y2m(ix).

- 1 en As
SetA

1 = =4*, A).

Definition:Eg(t):=Inf[30/(*) Golds for A =At] is the

geometric mixing
scale at time to
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Fact:Eg andIf are not equivalent) (in-Lunasin - Novikor-M.-Doezing' 12).
Butif flowof he is mixing, the If and g decay at similar

e-

cates (up to constants) =) If =3g =0 att=Tmix

conjecture (cost of Lazzanging set, A. Beessan): LetI be the

flow at time 1 of a sufficiently regular rector field m. If
&(A) is mixed toscale 5, their5 = G(A, K) such that

S (palmix,e(axdes (logel (B

conjecture is still open. Proved if u
replaced by IrulP,431. (Cuppa. De Cellis; '081.

Proof use the following quantitative estimates for so-called
zegular Lagzangian flows:

S log(1(- E(y,t1 +1)dy(x (ic/u(x,t)/Pex (2)
(x,r) 1Gx

where Gx:=[(4( x,t)/- x, t e [0,T3).
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Estimate (L) can be viewed as an integrated feem ofthe classical

cauchy-Lipschitz estimate:

log(1I(x,x) - (y,+) +1) =cIlvrCtII),. (L)

Incompressible flows with Soboler regularity areregular lagrangian.

Mixing Rates

If O is mixed by u, both If, Eg will decay to 0.

How fastthe mixing scales decays and whether perfectmixing
is achieved in finite or infinitetime depend on me andpossibly P..

Estimates (2) and (C) imeicate that In is key in controlling
the trajectories) we distinguish 3 cases:

(a) me <P([0,c); W5,P(T4), for some os<1, iP_a;
(b) re hP ([0,3); m!P(π4), for some 13p. i
k1 ut 2" (50,01;TS,P(T2), for some s1, IP.
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If u is the velocity of a physical fluid flow, then:
(a) includes the case of energy constraine flows (energy 1MCtII?);
(b) includes the case of enstrophy constrained flows (enstrophy

2
w=arble vesticityIll =11 Full I 1;

Isincludes the case of palinstcophy constrained flows/palinstrophy-I
11 FWIl?, w= arl a vocticity).

Optimal rates are known in all three cases now, using both deterministic

and stochastic flows.

We focus the discussion on decay
(b)

of functional scale (OCt)11_1.

Numerical simulations support:
ca) finite-time perfect mixing;
(b) exponential infinite-time mixing; ()

C) exponential infinite-time mixing.
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#. OPTIMAL MIXING

Finite-time mixing

Since (TI is time-aversible and OF0 is always a solution, finite -
time mixing, is only possible if non uniquenessof (weak) solutions holds.

=>by the DiPerna - Lions - Ambeosic theory, impossible under enstrophy
a palinstrophy constraint.

under am energy budget (PuCtII? GVt), finite-time mixing is
consistentwithlower bound on the mixing scale, btained by
simple energy estimates:write0 =AP, potential btH2 =>

11 vp1=11011+-, -) integrating by parts:

OCE"?- lluCtII, 0.(t!" = - Hact)110012

=>linear lower bound.
↳

construct a simple example that
achieves finite-time mixing for our
initial condition.
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Optimal mixer (energy budget

Already implicitly present in work of Beessan & DePauw.
on As,

Setts=
Itocus, do(x)

=I
on to

Employ a "slice and dia"strategy:apply piecewise constants

Shear flows, alternating vertical withhorizontal, halving time
at each step

Ex
Y2<x< A,horizontal stear a

=on1(21,0)Oxyc
Use scalingproportion of -1 noems:
fx(x):=f(xx) =x Ifill - I'll fil-,

- I

=>mixing scale decrease by a factorof
Iateach iteration.

Perfect mixing at time Tmix==2.
-
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Self-similar mixing

Purious construction is an example of self-similar mixing
=>I tn, ne I, such that0(x,tn) =8 (Nx, tn+1), NEIN,

that is, tracer field attime to consists of exactreplicas of
the field patterns attime thel at smaller scales.

Using uscaling easy to show:

(a) re(P([0,a);TSP), 01S<1 => finite-time perfect mixing

(b) a =4P(i0,a);ws,P),5=1 =

> exponential-in-time mixing

(4) re(b([0,0); 2,P), 531 => polynomial-in-time mixing

Foz (a), (b) self-similar mixing is optimal. Fee (c), suboptimal.



17

Exponential mixing

Definition:a mixes to exponentially in
time if there exists

constants ,,x0 (depending on and possibly be such that

Ef(O)(t): 11 O(t) 11 - 1 ce-ct,Ft20.

From Bressan's conjecture, expect an exponential lower bound
on sq(0) if re< 1 ( i0, T);WP (T4) fee some p>1.

Theorem (Iyer - Kiseler-Xu, 13):Let80e (44,0 = 0, and
2-

letme be a regular, time - dependent flow. For any pe(1, 0),
&e (0, 11, 5ro =vol00,X, so = de(d); c =c(p) such that

Sf(OCt)<soro001ex4(("fu(s)"es)
whe Ax ==[xe42/00(X) > 1110011 py super-level set of 00.

Note constants depend on the size of level sets of 50, not
just the 28 neem.
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Remack:Independentproof by C. Seis (13) using optimal transport
fee binary functions ->exponentiallower bound on the Monge-
Kantozovich distance 8(0) (Bienier -Otto-Seis'II), plus interpolation
inequality 'HOII-> 0 (0)?EfCO),TV total raciation.

Sketch of proofof theorem:0 Relax notion of E-mixed set to

E-semimixed set =>m,5)) < 1 - K for some ocicyc
m (B (x, (1)

27co =celx, k) such that I dell?-,=AxOd is

E-semi mixed

3 If It (A1 (0) is a-semi mixed, then

Set Fact pelt 1mCNYlog()(1<p(a)
4 Azgue by contradiction. F

Both proofs do not rule energy estimates -> geometric measure

theory arguments.
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Exponentially mixing flows

IMany classical examples of exponentially mixing maps e.g.
cat

map, barre's map). Some examples of flows in dimension o
on non-flat manifolds.

Here, we insiston flows with velocity of prescribed regulacity.
Present geometric construction (Alberti-Crippa-M. 14, 19) that
yields exponentially mixing flows with velocity. WeWip, 1p,
for certain binary initial data.

this construction has applications to other problems:loss of
regularity, anomalous dissipation.

As example of exponential mixers superceded by recent developments:

the flow generated by a time periodic, Lipschitz flow,

alternating between independent piecewise linear shear flows
is a universal) exponential mixer (Elgindi-Liss - Mattingly' 15
Myers Hill-Sturman - Wilson'211.



⑳
2 Proof of relies on a perturbation argument andthe fact
thatthe time I image of alternating piecewise linear shear

flows is a piecewise total automorphism (under certain conditions (
like the cat map.

3 the theory of random elynamical systems allows to construct
exponentially mixing flows thatare regular in space, but
cough in time:
cal solutions of the 2D Navier-Stokes equations with istochastic
forcing (white in time, colonel in space). (Bedeossian - Blumenthal
- Punshon Smith, all

(b) Pierrehumbertflow:alternating sine shear flows with
zandom phase. (Blumenthal- cot, zclati-Gralani 22). Can
also take fixedshears
where they act (coppermanabandom

intervals of time

4 All the examples in 1,2,3 are universal mixers (mix
all initial conditions ina dend subset).
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Self-similar and Quasi-self-similar exponential mixers

Describe a geometricapproach to constructing flows that
↑

mix optimally binary functions (this last condition can be

relaxed somewhat.

or will be of the form ox)= E*
*
with m(t) =

=m(4).

Prescribe the evolution of the setA. Show the exists a vele
city field as that nalize the given evolution.

Present two example

(i) sobolew example:velocity ae (*([0,0);WP (TY),12pca.

the evolution of set A contains a topological change(pinching
singularity) and it is self-similar.

(ii) hipschitz example:velocity meh"(50,01;ti(42)), the
evolution of the set cannot have any topological change
andit is quasi self-similar -fellows the steps in the

construction of the peace well (a space filling cross).
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Related constructions:1 Different analytic construction of
exponential mixers for functions that are not (closetol binary,
using cellular flows as building blocks, and("((0,a);w',P1)
P = 2 (Yar-ziates,17).

2 The construction in awas later generalized to an almost

universal mixer, using the factbakeranyis,itimage of two shear flows ↓

P = 2.

time-dependent paths and,unus

view time as a parameter along familia of curves ini

Notation:I paths:8:I ->i (or 1R2), I interval in M.
= - wis

denote UIII a ureus. I assumed at leastof class 21,ideally
of class TS, 522.
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2 time - dependent paths:U:Ix =
-> i < Cer 12, with 1,1

intervals in IR.
sit - > f(s,t)

Denote: I =j, =Ut er 28.

3 Adapted frame:(2(s),y(s)) for path ((e(s,t),e(s,t1) fee

time dependent paths, where i is the tangentrector, a is
the normal vector. With abuse of notation, write I(s) for
z(U(S1), e(8,t) foi z(W(s,t)) andsimilarly feet.

S

ocient all were poly andchoos m(s) =-21st=-(1s
15Cs) (

the normal velocity in fee a time-dependent path 5(s,t)

given by: Un =0
=50M

4 time - dependentdomains:E:I - >42 ((R4, Elt) class el, Ezl
+ 1> E(t)

Define normal velocity in as outer velocity of &ECt.
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③ Compatible rector fields:a compatible with E ifUn
If u is regular andcompatible and I is the flow of el:

I(t) =eIt, ICtrl] Elt= lt, ECtell, t,toeI,

where I (t) is any
connectal component of OECt) (a jordan anve)

=>O(x,t) =XEct)(x) is a distributional solution of (T)

with advecting velocityes and initial data 00=XEld.

the construction oftheexponentialmixers
based on the

following lemma.

Smooth Evolution Lemma:LetI be a smooth time - dependent
domain such that the measure of each connected components

of ECt) is commered. Then there exists a smooth, divergence
free vector field a thatis compatible with E.
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sketch ofproof:use steam function 4 of u,u =x
+4 =>

we can localized by cuttingoff, maintaining thedirecgend-

free condition.

So itis enough to define to in a tubular neighborhood of Elt).
Foliate this neighborhood with smooth curves Ia(s,H), 0-1.

On each IC, define 4 (s,t) =4(x (s, t) as solution of the

family of ODES ins:1 =4(s,t) =vwls.H

where 2(s,5) is the tangentvector to IC.

↓ is well defined as a function of Xei' if to periodic ins,

which fellow's from following Lemma. 1

Lemma:Let I be a the (closed) were andv a
2h function

Such that /I ~ dr =0. Given so, these exists u, autonomous,
such that:a)r.y =

0;b)Suppuc( x/dist(x, H) < rb.
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Proof of Lamma:let8: Itis be a parametrization of1.

chood:i) W(so =x-c1;ii) g: 1R +iRsmooth, q(0)=1,

Suppyc II, I]; evil r withocuar.

setB(1,r==(x / dist(x, I) < r] => 7 el differmeephism
:Ix(- rr ->B(I,r). with x

=t(s,y)- B(I,r), define

+(x) =4 (s,y) = =g(E)Ssw(8/sil) ilsilds'
=>224 =0,ycek - 1

Supp4 < BCI, E) c B(I,r).
then, extend toby zeee to BCA, I) andlet e=v4

Remarks:1 Lemme extends to time - dependent curves if wis

compatible, so that he is compatible.

2 By the divergence theorem, condition (Ido-- is necessary
to have a divergence fiel

3 choosing v=mn give existence of a compatible with 1.
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Homsthetic meves:I(t) =x(t) 1 =(x(t)x/x =E)with

1:1 -10, +a), I given support call. Set r
=x. I, I

normal to 5. then:y(x,4 =y[x] Un(x,t) =x) =(x) -

Also, if it is compatible with (m.Iwem I),
e(x, t =x'(t) it (it) compatibile with 1.

1stexample:pinching singularity

the mixing will be self similar. Only need to construct

the first step, the iteration done by zescaling
S

construct:

(a) es- L* (50,51;W"P(T4,pc,50 (in fact,
USE LeCt0,T), WYP) S21,13p2d e S11,12P -
= no (t) 4 Lip (T4) S-1

(6) 80Ct1 =Y=ct) - 5) where E is a time-dependentset
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such that m(ECH) =I , ECd =bC0,) disk, ECD is given

by 4 copin of initial disk at scale yz.

Me, of smooth except at+ =b,b =1, ...,
t.

Or continuous andtransported by us on intervals (hy,h).
=>O'weak solution of C++w.FO=0.

Step1:construction of ECt), me(t),0.t
· Define E(6) by reflecting access vertical millin (datteel)

Since ECD), E(t) Smooth, simply connectel, same and,
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then exists a smooth map dfelming ECe) into E(5);preserving
and => volt exists on [9,48] by Smooth Evolution

Lemma,with support in a sqan QCT?

Step 2: Construction of ECt),e(t), j<t < Y4

· LetI be one of the two mirror-symmetric components of
&Elf) 1R, as in the figure. In BLR, E =(1x,1 =x2}
and otherwise I smooth.

· Define hemothety of I with factor ((t): [8,4) ->(0,17

decasing x(5) =1 · "Is-
· Enough to construct DECA (Jecolan merel so that:
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(a) E(t) =E (5) on QIB;

(b) &ECt) 1B has two mirror-symmetric components, each

agreeing (up to rigid motions) with 1st in B

·By smooth Evolution Lemma, I us in a neighborhood of act)

for +e (, Y4). Extend itby reflection in R, andby zezo

to 9, Since ECt) =E(t) en R?

·ue is of theform us(x, t =xCH in( (t) =>choose it

so that we has needed sober regularity (x(t) =e2
- Fit).

Step5:construction ofHen1 t* I
· Proceed similarly to Step 2 with

Es), E(8) as given in the

figure, using homothaty.
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Step4:Construction of ECt), MSCH on 54t? <

· Prosecal similarly to step 2

withE(8), E) ) as given
in the figure.

·the two diskare exact

copin of D(0,4) with zadius y.

Step 5:construction of ECt1, en(t)Om I -+ 1

· Repeat steps 1- 4 on each of thetwo disks to create4
identical disks of cadius 1.

16

itecation andconstruction ofu, 0

· Define an(x,t) =2-net-n,),O(x, =0°t-n,neNI I

·Letu(x,t) =ui(x,t),0(x,t) =0n(x,t) en In, n+1) xi2
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=>O weak solution of (1) withvelocity is on (0, + a)x i

with 0(d =090.

· By scaling (note we do not escale the domain):

10(n)(y - 1
=10"(n)! - 1 =2- 448-01)'

Remarks:O this example show pathologiesthat regular Lagrangian
S

flows, arbitzarily close to Lipschitz, can have:

(a) Flow can compass a segment to a point (expand a point
to a segment) in finitetime.

(b) trajectoriesofa starting atany point of thissegment ace
non unique.

2 construction is localizedmar dECt) i in thecube QC)
it can be adaptedto the case of MR2 (with m,0 still

compactly supported) of a bounded domain with compatible

boumdazy conditions.
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2nd Example:beans snake

construction follows similar ideas as fee the pinching singularity
=>give the time evolution of aset Elt) anduse the smooth
Evolution Lemma to construct ele.

Here ·. construction is quasi self-similar:ECI) is not an

exactaplica of ECo) atsmaller scale. Itis a suitable
combination of rescaled copies from a finite family of
initial patterns.

· the initial condition is a strip centered around themedian

segment in 42

·the time evolution follows the iterative construction of the
Peane Curve a space filling mess.

· Although a can bemade smooth (decivation jumps because of
periodicity) control only Lipschitz neem uniformly in time.
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Evolution of the set Elt): in Example 2:

Jump -
can bea

Smooth
W

-zamsition -

Family ofbasic moves fee time stepping:

I
- To consol

be eliscenti-

Set EC) constructedusing homothty. nuous only
atentry/exit

time evolution of support mice of ECt: points.
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I

V. LOSS OF REGULARITY IN LINEAR TRANSPORT EQUATIONS ·

Optimal mixers useful to investigate the ill-poseelnessness of
C

hear transport equations with tough (but not too long al
velocities.

· we have already shown with Example 1pointwie discontinuity
of the flow map

· Investigatediscontinuity in sobeler spaces.- by product of
-

toss of angulacity fee solutions of (i).

Remark - Non uniqueness of weak solutions

Recace the"slide-and-elice"example of finite-time perfect mixing.

By linearity (O =0 always solution) andtime reversibility,
finite-time perfect mixing -nonuniqueness fee solutions to (T)

In the slice-and-dice example, u(t) eBWCT4 up to +=Tmix,
andthe total variation of u is proportional to the length
ofthe interfaces being created in the teacher field.
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->lluctil doubles on each successive intervals oftimeTV

of length2-"

Since Twix=2n lastly, Oct <Tmix
Tmix-t

=>> M =L( [0, Tmix);H

By Ambrosio's result (ue ('910,51; BV) => uniqueness),
the slide-and-dice example isoptimal.

Loss of angularity

Since mixing by sticking alone is obtained by mating small

scales in the tracer field (- large derivatives), one expects a

connection with growth of soboler neems => enceokel in the
interpolation inequality:

NOCH1 ? 110(1s 1OCtYy-s .520

liO(t)Iy-s->0 => llOCHIys->, since IIOCt)11 constant.
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Modifying the"Peace Snake"example gives the following result.
.

(Crippa-Albert, - M. 19):Letd = 2. there exist

Do e ec (Mel andre (9 (50,0) XMe) such that:

(i) ee t2" ([0,4); 24((el), 1pc a;
(ii) if O is theunique weak and Lageangian solution of (T)

with velocity and0(0) =0, then OG(([0, +5) X Rd)
-

iii) l10(t)lHS(10)) =0 t>0,+ss0.
In addition, a and & all supported on a cube in Rd and
Smooth outside a point need in space.

Remachs:: the theorem provides an example of total, instantaneous

loss of soboler ugularity (including fractional) for weak solution

to linear transport equations and1st example of its kind.I

2 O is the unique unormalized (hence lagrangian/solution ->
theoum implies discontinuity of the flow mapin WP, 1pcs.
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Independently, Jabin (15) showeddirectly discontinuity of the flowr

map in
will by using a random flow. I see also. DeNitt-Bianchini 201

3 By contest, if u is lipschitz, then the flow map is also

Lipschitz (though Lipschitz constant can grow exponentially in
time) andregularity of 0 up to Lipschitz is propagated.

4 some regulacity of 0 do get propagated by us with wip agulacity
=>essentially only the logarithm of derivatives (Fourier

L

multiplier log/31, Legar' 181 is propagated and our example
implies that this usult is sharp (Bene' - Nguyen' 19).

5 Loss of regularity is in fact a generic phenomenon in the senseI

of Baire's category theorem /Ghisi-yobbino'co, Bianchini-Zizza'22)

6 Some connections with norm inflation phenomena for PDEs, but
here itis a

linear phenomenon.

Main idea of proof:use mixing to grow Soboler norms exponen
tally, then rescale to turn growth into instantamous blow

up.
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We will need a technical lemma to treat fractional inqulacity)
although the HS noem, OCSI, is notlocal, it almost

decouple for superpositions of functions with will separated
supports.

To prove Lemma we use Gagliando seminoems in HS/R"), 0cs<1:

1711s = Sine(d f(x)-f(1)1 exeby
1x - y,0 +25

Main reason why we use X-based sobder noems for 0.

Lemma:Let OCSI, KiricIR, di open, ki compact,
-xz =4,dist(ki,bi4=: Xi 0, i =1...N,HEIN.
If fie HS (e), suppli CKi, i =1... N, then

"I fell is-isfill

Formula extends to serice if RHS is positive (our cace).
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Remark:the construction of 2Dexponential mixers can be

lifted to any ofa in a stecightforward fashion .. given

n =I
Y(iRe-2), let: a(x....xel) =y(X5, - - -,Xx)u(x,xz)

-(x,..x) =y(x3, ..,xd)0(x),x2)

sketch ofproof of theorm:we construct u and 8 as

sums· n =2 u(h) 0 =2dns, when uin), on are obtained
W n

by vscaling us, Old

Step 1:Construction of basic element's uld, old

the construction of the Lipschitz exponential mixer ("Peace
Snake") can be modified to make velocity andthe scalar

smooth. Thin lift them to use, ocol in Mel, supported
on theunit cube Qo CIRd, ice divergence face.

From theconstruction the following neem bounds held:
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(a) re(d),0(0) =2P([0, +a) xie), fold x =0;
(0)

(b) x =(0([0, + x);wi,P((Rell), 1pcs, and reo,
5b =b(p) >0,Br =Br(x,r) 0 such that

Ilud)(t)1jr,p-Breb(r -1)t,t x0; (* (

x+ 0?s<2,720,s =Gs(s) so such that

10(d)(t) 1)
-(ie)

[is e- cSt, t20; (**)

the - HS interpolation inequality then implies

11 &Cd (t) HS (e) &G e
cst

, tx0; (* **

for some constant c =d(p,d,s,(d(01)

Step 2: construction of a(n), u(h)

· Let (u) be a sequence of positive numbers, in to as n tc,
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to be chosen tater. LetQn=31nQe (up to rigid motion).
choose centers of cubes on so that they are pairwise disjoint
QurQm=4., if nym andsuch that in the sense of

&

convergence ofsets Ou > 1903, a point in ind
n -c

Qu
want us to have compact support
in 1R=>

Am(rOn)<c if 1n c +0. Q,0
n

· up to teamslations and zotations, set: ⑦100
90

ul(x,t ) =E En I Q1000
=) subtersare&(a) (x,t =Un 00 lEn n)

for sequences (Eng, [Un) of positive numbers, to be chown later.

In space scaling
· Meaning of parameters:In time scalingS In amplitude scaling
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Step 3:construction of 1,0

· Let e =Eu(n),0 =50(n) => m, d well defined atleast
R

a..c..) On have pairwise dijointsuppert).
-

-

Oldweak solution ofit with velocity eel=>f(h) weak solution

of (i) with velocity exci) => 0 weak solution of IT) with

velocity u

Step 4:Check noem bounds

· From behavior of Lebesque andSobeler under escaling in id:
1 - r +oB a c (P([0, +x);i) if in -(bt
2n

Bue LY([e,+a)x d) if O?IG, indepen of a

using atimate (*).
-
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· Using who Lemma on localization of Honoems:

↳- aC 00 =0(d =FU(e fr if Un xm +a

3 0 =(([0, +x) x d) if (U) bounded.

·Using also (***)

D OH - HS (Md), s30, t20 if ZUn x-2s, =
a

Step5:Choice of In, zn, In

· Choose in =4s, xn=e-k=> A, B,B' hold with r=1

for all 1<p<.

· Choose rn=e-n=c, I Cold with 530.

· verify thatI holds with the choices of parameters.
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condition D becomes:e-2n" eld-esInezestr =+0
7

Since cst s0 => D holds.
1

· two natural questions arise:

Does loss ofregularity holds fee all soboler spaces that
does not embed in theLipschitz space, i.e. for
e e wr,P(Ma),kr< +1 1P <a?

2 Does then exists a universal construction for a that
Imakes (most initial conditions do blow-up!

WC cannottake us in the presentconstruction, as scaling
is unfavorable in this elgime=> noems of a grow feet so

We give partial answer to 0 and2 without appealing to
mixing flows.
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key idea: blow-up of positive norms is a local phenomenon,
growth can be achieved with simple flows that all not

mixing is allow fee explicitcomputation ofthe south
9

of norm in time and allow for more flexible scalin g-

Loss of regularity revisited

theorem (Sippa-Elgindi-Iyer-M.'22):Let00eHE (MP), 022,
non-constant. There exists a compactly supported, dir. full,
rector field et(*([0,0);wYP((Re)), 11pxcs,rx 4 +1.

such that the unique weak solution of (i) with velocity
e and0(0) =00 satisfics:OCt4 H(Me) + +x0.

Remarks:1 we do not know how to show that the

feactional necms HS,0<S<1, explode, since the growthof
H'noem is an explicitenergy estimate.
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2 The proof is still based on escaling of a basic element,
but the location where the escaling occurs can no longer be

arbitrary, but it is based on where the Herneem of be is large

3the basic element is constructed from following observation:
the H1norm of a nonconstantfunction for ye increases by

2

a fixedamount under the action of shear flows parallel to
axis at time 1.

↓Recently, instantamous less of some regularity was established
for the CD Euler equations in vectivity form (Cordoba - Martinez
zovoa-Ozan'ski, 22) andeven for 2D surface quasi-geostrophic
CSQG) equation fit fractional dissipation (codeba - Martinet

Zoroa, 25) by a relatedneem inflation +rescaling +gluing
procedure for some initial conditions.
2DEuler and (inviscioll SQL an both active scalar equations.

The obsceration in 3 follows from an explicitcalculation.

Motation:Setfilz) =

A Sim (25z + (-1) I), i =1,2, Aso. Let eh
be the elements of standard basis 22 =10, ...,1,..0), k =1,...,d.

> 2th entry



⑱
Lemma:Let doc'd id = 2, be a given 2 subelemain. For

any
non-constant function 46 H'( Tel, Ia vector field (which

depends On 4 Xero I such that:

i) It is a shear flow M(x) == fi(xj);with i =1 r 2

for some j=c.... andj'= } it;Ie
ii) If 4 is the weak solution of 114 +u.rp =0,b(0) =4
Om so, then for Ts0:

11&(0,5111
(2) ei)

=(1 +2) 15b(01)
where est image of to under flow of Mat +=5.

Proof of Lemma:For i,it(1,2),jz(1, ...,d], set

wi,j(x) = =1 - 11:fi(xj)ej, andlet divingbe t

transported by wie,j:i,i,j(x,t =+(x- (-1)2fi(xj)ej)
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Computing divatives andsumming over i, i',j:

E lv bi, ijcerr, i, is =(40) +8F2A2T2) 11 It Il
i, i',j (md

Since there are 40 terms on the left, at least one must
bestofthe night-hand side, which gives the result.

40

Step1:exponential growth of th'noem

Using Lemma, given any DoEH(Re), construct smooth
(inx)

I compactly supported, eliv-face vector field such that
the HI-norm of Oct) geows exponentially int.

this flow and the weak solution it generates are initial
elements ofan iterative escaling scheme.

to apply Limma, we liftthe flow with velocity is from
the tomus d to 10.
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Describe lifting only for d=2. Identify 2 with 50,83"
andchoen &o =

50,17" < [0,83?

·By Lemma, a vertical es horizontal

shear grows the Hi-nosm of 00.
It.10,5

Say itis a vertical shear.

· then the image of 10 = 5013 --Do

under this shear lie in a vertical

strip in 20,83" (the strip,'1). R

· Deform S1into theclosed "teach"et
de =

=Res
by periodicity, keeping to fixed

>

=>the 21 norm ofthe resulting flow
is controlled
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· By Lemma nosm ofOli grows in atleast one
I

sublemain j which up to a rotation can be
I

identified with ag =eb =b =2 growth in sobeler
notm.

Proposition:Let0.8Hio((Re)), ol 2, andfix230.

then, I G =G(d, 2), independent of do, anda rector

field v, eir-free, supportedan Ee=[-3,4]", Ftco,
such that:Sup IV(t)I ->Go,d)., 720,

te
·

2
+
(mol)

andthe weak solution. O of (i) withvelocity v, initial
condition to, satisfin:

(a) 11
0(n) Il

↳(Re)
= ean I roll(re) If he iN.,

with 10 =[0,114, and
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(b) 11 v 0(t)11
-(Le)

↳est- itll
(re) / 72,

fez =B(9,d)) independentof 00

smatch of the proof:
· lift flow a from it to is a resulting flow.

·

composing flew with itself gives exponential growthof
the H-noem of O att =m.

· Use thatiwitIy1 is unifiemly int to get lower
bound at intermidiatetimes it (n,n + 1) ep to
a
small loss.

I

Step 2:Scaling and iteration

Use lifted relocity andthe associated weak solution 0.

Pick a sequence of aber an, center on, andsidelingh in
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Rick Du such thatQuizzan are pairwise disjoint andcluster

ata pointyet. Theprivicelocation is to be

chosen later on.

& up to a zigial motion, we can repeat. Steps 1-4) and con
- &

structvon Qn. call
vi =vlan

in grows reams of8 expentially.

Define ec =u, and0 ==) O weak elution

of (it with velocity u =me, initial onditionde

· Mescale on to achieve blow up:etn (x,t=t
· We have Suppun?Qi, a smooth in x outside of a

Ipoint 90 (where on concentrateas nea



⑭

· Define e-I un and leta be the weak solution of(t)
n

with rejects us, initial data de

· By construction:

In (t)"wir(tell? EEu=

wr
(Y) at

"*0n1t;512) =E,eEnMn, Mn-irogan

yoal is to choose an, 3m, In so thatthe firstinequality
above is as, therecord =as.

Step 3:Covering Lemma, choice of in, an

choose urban on bandon when a rescaled focal recession

ofH'mosm of do is large
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Let.f(x) =100x => cLec((Re)), fte.

Define Ar(x: =x S f(y)ey
&r(x)

Set B =4 x=iRd / 7hm A(r) =f(x)).
r- 0+

ihas full measure by Lebesque differentiation theorm;

and 5550 (since A. Ee) such that the fellowing subset

of 5, D: =(x =5/limAr(x) [] - B(0,R), Rn0

has position measure. -)

for x = D, 5 wxc0 such thatSarcxialdy? Erei, our
when Qr(x) rube with center x, sider.

=37cme D, xns0 such that
once - n andE Mn =c in

es
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an =Qx(cu) have property that @u=z an are

pairwise disjoint.

Finally, since I bounded,Cn has a cluster point

In accumulate to a point) and Van is bounderl

Step 4:choice of in

From estimate (Y)), IIOCEII ies* if
o

ten 0211.1) Is in
, t0;

while Il rst)" irp C, if
n=1

(3.2)*, t,r =1 - r +0.

choose in =fog-> can verify (B1) by a directI
calculation. Fee (B.2), 5 H =N(8) such that



57

login)( in (512, fn =N(r) =

M(5) -> E

-
- 84/zE. I (log in)1n +2 e <O

n=1
n
=x(t)

& pen problems

I can we modify construction to show less of H neem

&<S<1?Interpolation require a lower bound en H-s

=>mixing.

2 can we construct a universal "exploder"?
Idea is to replicate this construction on a sufficiently
dense setin (e), but a challenge is that ubes u

am no longer disjoint.
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Example 2:shear flows on tows

Let b =4 and (x,z)= (er(y),4) Steady horizontal shear flow.

Apply again the Fourier transform in x => apply the

resolventestimate to Hi,k =(Ak +iku(y), 1k = - k +by,

on H =(( 50,25];dy) to bound Hr =A + ucylexon (T3).

the Assumption on the velocity profile becomes:

Assumption 3 (shear flow):Im, He IN anddo E(0,(2)
with the property that, for any e IR and any Ocrcdo,
I n = M and points y1,.. InG [0, 22) such that

lub) - x1 =c,(f)m, ly-zjbd
-j =31,. .,e)

Example:en (y) =(Sing ) m
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then, the resolvent estimate give thefollowing result.

Rozollacy:Let us be the he projection onto the k-th

horizontal mode. Then, I30' independentofand h

112 - HitPhlop er d'or4/k1t+π/

=> I e-Hitlope-xpit+T, tso,Nr=ser.

Remark:I we could also that the case of a channel
withperiodic boundary conditions in y, and Dirichlet

es Hermann conditions on 8, as fee the eliskof pipe.

② Feng-Fung-wang considered certain types of parallel

flows on 13 =[0,43x50,42) x 50,15]:

(x,2,z) =(u(y)sin(2πy/3),u(y)cos(ky/(3),0)
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Applications to the 2D Kuramoto-Sirashinky equation
· Model fee long wave-length instability in dissipative
systems (flame front propagation, combustion).

· Work on CD Tozs i =50,21] x[0,22]

Scalar form 1
+b +x24 +x4 +104) =0

fee 4: Mx50, 5) -> 1R CKSE)

vector frem &=u +a2u +xn +e.ru =
0

where u
= 4.

· d =1 => global existence by encegy methods (Tadmer)
as I mixu =e.

IR

· ok 2 => no known Lyapunov functions (growing
mode if Lisat, no max principle, no energy estimates
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awell-propress for b* LP (Biswas-Swanson

Continuation cateria based on the L holm I Bellout

- Benachour-titi, Feng-M., Stanislanovan Stefanout

Analyticity andJerry equity (with cough olatal for

t0 1 Ambox - M., Biswas-Swanson, Stanistanova - Stefanor)

modes assuming solution globalr&determining
(11 vd(t)1l > t> 0) (Nikolaenko-Sheurer-Temam)

yaeexistence for thin or anisotropic domains

(Benachour-Kukavica-Rusin-Ziane, Kukavica-Massatt,

sell-taboada), small data and no growing modes
< Ambose - M., Feng-M.), with advection (Coti Zelati
-

Dolce-Feng-M., Feng-Mo),1growing mode (Ambrose - R.)
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Global existence for 2D KSE with all rection

·

Study CDKSEwith advection by a shear flow. Y:

I
+4 +ra +rx +ribl +r.rb =

0 (AKSE)

where i
=A5, 0

=
A -1, P(x,y) =(u(y),e).

· Adrection has a lege kernel -> no enhanced dissipation
in the kernel

-> separateevolution on the Kernel.

· Given gt((π4, denote:

<ys(y) =7,J."g(t,x,y)dx / 9F(x,y) =g(x,y) - xg)(y).

<g) projection ento kernel of u(y)&x.

&I projection enter exthogonal complement in 12

· Refer to <9>,9 f as kernel, projectedcomponents.
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· Feem (AKSE), if I solution of (AKSE), <> satisfia

<x +e) *4++y(xdx +r04yb +rdyx). =0

while ofsatisfie:

0t b + +u(y)2x4 ++ra2=
-+ +1+15+

- r2y4 +2y(b) - rxd+

=>two equations coupled through byc4>=> Set p =dy<4
thatsatisfies:

2t + +2,)8y1b +1dx +r4y4+r0+ +ry =0

· An 18 continuation principle hotels for these equations.
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Main result (Cetizelati-Dolce - Feng -M.1(2):

Letbe 6(T)). Let uly) Satisfy Assumption 3.

then, 10% depending en L, L2, Il belly such that

for any 0<5<%0,5global-in-time weak solution

of (AKSE) Witholata 4(0) =b0.

theezem extends to shear profile a witha finite

number of critical points oforder m2.2,but

the resolventestimateyields a week bound for

semigzoup 5-Hit.

the parameter to depends on the eats atwhich

P/x(r) -> 0 as 0-0.



74

Bootstrap

· global existence theorem based on a bootstrap argument
(He- Bedeessian).

· Local existence theory implies for + xe:

Bootstrap Assumptions:

-14f(t)!)--)8c
-
xrt/4(df(d)));

2 -So*b(s) as 4114f(0)11E

Let to be the maximal time such that 1.8 Golds

on te,to], then on 50,to]:

drt

114(t)"+1.8415)yds1.("bf10)yea
For I small;okcay of the semigzoup implier bootstrap.
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Proof ofmain result

Lemma (Bootsteap estimates):If no small enough and

· crcro, then fee all t t [0,t0):

· 114 f(t)!! 4
-

xr4114f(dll2;
2u(*4 f(s)(alb+(d)).

S1:By continuation in handLemme, to =0 =

>

4 fe(b([0, +0);(2(π())n(((0,3);H2(42)).
Step 2:Hence 4 =0y<b>=(*) 50,5);22()r

(3) 50,5);H2-(41) =4 =(a(t0,T)) + ecTca.
I

: =r4 + +kb =((TH).

4:By Poincan't triangle inequality, <43*2* (70,51; 24
=>b =bf+cd) =(40) +0,T):"(R)). #


